- Introduction
- Alumet core, plugins, agent
- Installation and Configuration
- 1. Installing Alumet
- 2. Running Alumet
- 3. Configuration file
4. Distributed measurement with the "relay" mode
- Tutorials for common use cases
5. Measuring the energy consumption of an AI model training
6. Monitoring an entire system
- Plugins reference
- 7. Measurement Sources
- 7.1. grace-hopper: Grace and Grace Hopper superchips
- 7.2. nvidia-jetson: NVIDIA Jetson edge devices
- 7.3. nvidia-nvml: dedicated NVIDIA GPUs
- 7.4. perf: fine-grained Linux performance counters
- 7.5. procfs: system and per-process measurements
- 7.6. quarch: query a Quarch module
- 7.7. rapl: x86 CPU energy consumption
- 7.8. raw-cgroups: Linux control groups accounting
7.9. Integration with HPC platforms
- 7.9.1. oar: measure OAR jobs
- 7.9.2. slurm: measure Slurm jobs
- 7.9.3. kwollect-input: pull measurements from kwollect
- 7.10. k8s: measure Kubernetes pods
- 8. Data Transforms
- 8.1. energy-attribution: attribute the energy consumed by the hardware to the software
- 8.2. energy-estimation-tdp: estimate the energy consumption when it cannot be measured
- 8.3. process-to-cgroup-bridge: Turn per-process data into per-cgroup data
- 9. Measurement Outputs
- 9.1. CSV files
- 9.2. ElasticSearch / OpenSearch
- 9.3. InfluxDB
- 9.4. Kwollect API
- 9.5. MongoDB
- 9.6. OpenTelemetry
- 9.7. Prometheus
- 10. Special plugins
- 10.1. Relay client and server
- 10.2. socket-control
- Community
11. Who is behind ALUMET?
12. Contributing